Subalgebra A21D14
2 out of 23
Computations done by the calculator project.

Subalgebra type: A21 (click on type for detailed printout).
Centralizer: B12 .
The semisimple part of the centralizer of the semisimple part of my centralizer: A21
Basis of Cartan of centralizer: 2 vectors: (0, 1, 1, 0), (0, 1, 0, 1)
Contained up to conjugation as a direct summand of: A21+A11 , 2A21 , A101+A21 , A21+2A11 , B12+A21 .

Elements Cartan subalgebra scaled to act by two by components: A21: (2, 2, 1, 1): 4
Dimension of subalgebra generated by predefined or computed generators: 3.
Negative simple generators: g5+g11
Positive simple generators: g11+g5
Cartan symmetric matrix: (1)
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): (4)
Decomposition of ambient Lie algebra: 6V2ω110V0
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). V2ω1+2ψ1+2ψ2V4ψ2V2ψ1+2ψ2V4ψ1V2ω12ψ1+2ψ22V2ω1V2ω1+2ψ12ψ2V2ψ1+2ψ22V0V2ψ12ψ2V2ω12ψ12ψ2V4ψ1V2ψ12ψ2V4ψ2
In the table below we indicate the highest weight vectors of the decomposition of the ambient Lie algebra as a module over the semisimple part. The second row indicates weights of the highest weight vectors relative to the Cartan of the semisimple subalgebra. As the centralizer is well-chosen and the centralizer of our subalgebra is non-trivial, we may in addition split highest weight vectors with the same weight over the semisimple part over the centralizer (recall that the centralizer preserves the weights over the subalgebra and in particular acts on the highest weight vectors). Therefore we have chosen our highest weight vectors to be, in addition, weight vectors over the Cartan of the centralizer of the starting subalgebra. Their weight over the sum of the Cartans of the semisimple subalgebra and its centralizer is indicated in the third row. The weights corresponding to the Cartan of the centralizer are again indicated with the letter \omega. As there is no preferred way of chosing a basis of the Cartan of the centralizer (unlike the starting semisimple Lie algebra: there we have a preferred basis induced by the fundamental weights), our centralizer weights are simply given by the constant by which the k^th basis element of the Cartan of the centralizer acts on the highest weight vector. Here, we use the choice for basis of the Cartan of the centralizer given at the start of the page.

Highest vectors of representations (total 16) ; the vectors are over the primal subalgebra.g7g2+g10g6g3+g4h4+h2h3+h2g4+g3g6g10+g2g7g1g8g11g5g9g12
weight00000000002ω12ω12ω12ω12ω12ω1
weights rel. to Cartan of (centralizer+semisimple s.a.). 4ψ22ψ12ψ24ψ12ψ12ψ2002ψ1+2ψ24ψ12ψ1+2ψ24ψ22ω12ψ12ψ22ω1+2ψ12ψ22ω12ω12ω12ψ1+2ψ22ω1+2ψ1+2ψ2
Isotypic module decomposition over primal subalgebra (total 15 isotypic components).
Isotypical components + highest weightV4ψ2 → (0, 0, -4)V2ψ12ψ2 → (0, -2, -2)V4ψ1 → (0, -4, 0)V2ψ12ψ2 → (0, 2, -2)V0 → (0, 0, 0)V2ψ1+2ψ2 → (0, -2, 2)V4ψ1 → (0, 4, 0)V2ψ1+2ψ2 → (0, 2, 2)V4ψ2 → (0, 0, 4)V2ω12ψ12ψ2 → (2, -2, -2)V2ω1+2ψ12ψ2 → (2, 2, -2)V2ω1 → (2, 0, 0)V2ω12ψ1+2ψ2 → (2, -2, 2)V2ω1+2ψ1+2ψ2 → (2, 2, 2)
Module label W1W2W3W4W5W6W7W8W9W10W11W12W13W14W15
Module elements (weight vectors). In blue - corresp. F element. In red -corresp. H element.
g7
g2+g10
g6
g3+g4
Cartan of centralizer component.
h4+h2
h3+h2
g4+g3
g6
g10+g2
g7
g1
g2+g10
2g12
g8
g3g4
2g9
Semisimple subalgebra component.
g11g5
h4+h3+2h2+2h1
2g5+2g11
g11
h4h3h2h1
2g11
g9
g4g3
2g8
g12
g10g2
2g1
Weights of elements in fundamental coords w.r.t. Cartan of subalgebra in same order as above0000000002ω1
0
2ω1
2ω1
0
2ω1
2ω1
0
2ω1
2ω1
0
2ω1
2ω1
0
2ω1
2ω1
0
2ω1
Weights of elements in (fundamental coords w.r.t. Cartan of subalgebra) + Cartan centralizer4ψ22ψ12ψ24ψ12ψ12ψ202ψ1+2ψ24ψ12ψ1+2ψ24ψ22ω12ψ12ψ2
2ψ12ψ2
2ω12ψ12ψ2
2ω1+2ψ12ψ2
2ψ12ψ2
2ω1+2ψ12ψ2
2ω1
0
2ω1
2ω1
0
2ω1
2ω12ψ1+2ψ2
2ψ1+2ψ2
2ω12ψ1+2ψ2
2ω1+2ψ1+2ψ2
2ψ1+2ψ2
2ω1+2ψ1+2ψ2
Single module character over Cartan of s.a.+ Cartan of centralizer of s.a.M4ψ2M2ψ12ψ2M4ψ1M2ψ12ψ2M0M2ψ1+2ψ2M4ψ1M2ψ1+2ψ2M4ψ2M2ω12ψ12ψ2M2ψ12ψ2M2ω12ψ12ψ2M2ω1+2ψ12ψ2M2ψ12ψ2M2ω1+2ψ12ψ2M2ω1M0M2ω1M2ω1M0M2ω1M2ω12ψ1+2ψ2M2ψ1+2ψ2M2ω12ψ1+2ψ2M2ω1+2ψ1+2ψ2M2ψ1+2ψ2M2ω1+2ψ1+2ψ2
Isotypic characterM4ψ2M2ψ12ψ2M4ψ1M2ψ12ψ22M0M2ψ1+2ψ2M4ψ1M2ψ1+2ψ2M4ψ2M2ω12ψ12ψ2M2ψ12ψ2M2ω12ψ12ψ2M2ω1+2ψ12ψ2M2ψ12ψ2M2ω1+2ψ12ψ2M2ω1M0M2ω1M2ω1M0M2ω1M2ω12ψ1+2ψ2M2ψ1+2ψ2M2ω12ψ1+2ψ2M2ω1+2ψ1+2ψ2M2ψ1+2ψ2M2ω1+2ψ1+2ψ2

Semisimple subalgebra: W_{12}
Centralizer extension: W_{1}+W_{2}+W_{3}+W_{4}+W_{5}+W_{6}+W_{7}+W_{8}+W_{9}

Weight diagram. The coordinates corresponding to the simple roots of the subalgerba are fundamental.
The bilinear form is therefore given relative to the fundamental coordinates.
Canvas not supported




Mouse position: (0.00, 0.00)
Selected index: -1
Coordinate center in screen coordinates:
(200.00, 300.00)
The projection plane (drawn on the screen) is spanned by the following two vectors.
(1.00, 0.00, 0.00)
(0.00, 1.00, 0.00)
0: (1.00, 0.00, 0.00): (300.00, 300.00)
1: (0.00, 1.00, 0.00): (200.00, 312.50)
2: (0.00, 0.00, 1.00): (200.00, 300.00)




Made total 1904139 arithmetic operations while solving the Serre relations polynomial system.
The total number of arithmetic operations I needed to solve the Serre relations polynomial system was larger than 1 000 000. I am printing out the Serre relations system for you: maybe that can help improve the polynomial system algorithms.
Subalgebra realized.
1*2 (unknown) gens:
(
x_{1} g_{-1}+x_{2} g_{-5}+x_{3} g_{-8}+x_{4} g_{-9}+x_{5} g_{-11}+x_{6} g_{-12}, x_{12} g_{12}+x_{11} g_{11}+x_{10} g_{9}+x_{9} g_{8}+x_{8} g_{5}+x_{7} g_{1})
h: (2, 2, 1, 1), e = combination of g_{1} g_{5} g_{8} g_{9} g_{11} g_{12} , f= combination of g_{-1} g_{-5} g_{-8} g_{-9} g_{-11} g_{-12} Positive weight subsystem: 1 vectors: (1)
Symmetric Cartan default scale: \begin{pmatrix}
2\\
\end{pmatrix}Character ambient Lie algebra: 6V_{2\omega_{1}}+16V_{0}+6V_{-2\omega_{1}}
A necessary system to realize the candidate subalgebra.
x_{6} x_{12} +x_{5} x_{11} +x_{4} x_{10} +x_{3} x_{9} +x_{2} x_{8} +x_{1} x_{7} -2= 0
x_{6} x_{11} -x_{2} x_{7} = 0
x_{6} x_{10} -x_{3} x_{7} = 0
x_{6} x_{9} -x_{4} x_{7} = 0
x_{6} x_{8} -x_{5} x_{7} = 0
x_{5} x_{12} -x_{1} x_{8} = 0
2x_{6} x_{12} +x_{5} x_{11} +x_{4} x_{10} +x_{3} x_{9} +x_{2} x_{8} -2= 0
x_{5} x_{10} -x_{3} x_{8} = 0
x_{5} x_{9} -x_{4} x_{8} = 0
x_{4} x_{12} -x_{1} x_{9} = 0
x_{4} x_{11} -x_{2} x_{9} = 0
x_{6} x_{12} +x_{5} x_{11} +x_{3} x_{9} -1= 0
x_{3} x_{12} -x_{1} x_{10} = 0
x_{3} x_{11} -x_{2} x_{10} = 0
x_{6} x_{12} +x_{5} x_{11} +x_{4} x_{10} -1= 0
x_{2} x_{12} -x_{1} x_{11} = 0
The above system after transformation.
x_{6} x_{12} +x_{5} x_{11} +x_{4} x_{10} +x_{3} x_{9} +x_{2} x_{8} +x_{1} x_{7} -2= 0
x_{6} x_{11} -x_{2} x_{7} = 0
x_{6} x_{10} -x_{3} x_{7} = 0
x_{6} x_{9} -x_{4} x_{7} = 0
x_{6} x_{8} -x_{5} x_{7} = 0
x_{5} x_{12} -x_{1} x_{8} = 0
2x_{6} x_{12} +x_{5} x_{11} +x_{4} x_{10} +x_{3} x_{9} +x_{2} x_{8} -2= 0
x_{5} x_{10} -x_{3} x_{8} = 0
x_{5} x_{9} -x_{4} x_{8} = 0
x_{4} x_{12} -x_{1} x_{9} = 0
x_{4} x_{11} -x_{2} x_{9} = 0
x_{6} x_{12} +x_{5} x_{11} +x_{3} x_{9} -1= 0
x_{3} x_{12} -x_{1} x_{10} = 0
x_{3} x_{11} -x_{2} x_{10} = 0
x_{6} x_{12} +x_{5} x_{11} +x_{4} x_{10} -1= 0
x_{2} x_{12} -x_{1} x_{11} = 0
For the calculator:
(DynkinType =A^{2}_1; ElementsCartan =((2, 2, 1, 1)); generators =(x_{1} g_{-1}+x_{2} g_{-5}+x_{3} g_{-8}+x_{4} g_{-9}+x_{5} g_{-11}+x_{6} g_{-12}, x_{12} g_{12}+x_{11} g_{11}+x_{10} g_{9}+x_{9} g_{8}+x_{8} g_{5}+x_{7} g_{1}) );
FindOneSolutionSerreLikePolynomialSystem{}( x_{6} x_{12} +x_{5} x_{11} +x_{4} x_{10} +x_{3} x_{9} +x_{2} x_{8} +x_{1} x_{7} -2, x_{6} x_{11} -x_{2} x_{7} , x_{6} x_{10} -x_{3} x_{7} , x_{6} x_{9} -x_{4} x_{7} , x_{6} x_{8} -x_{5} x_{7} , x_{5} x_{12} -x_{1} x_{8} , 2x_{6} x_{12} +x_{5} x_{11} +x_{4} x_{10} +x_{3} x_{9} +x_{2} x_{8} -2, x_{5} x_{10} -x_{3} x_{8} , x_{5} x_{9} -x_{4} x_{8} , x_{4} x_{12} -x_{1} x_{9} , x_{4} x_{11} -x_{2} x_{9} , x_{6} x_{12} +x_{5} x_{11} +x_{3} x_{9} -1, x_{3} x_{12} -x_{1} x_{10} , x_{3} x_{11} -x_{2} x_{10} , x_{6} x_{12} +x_{5} x_{11} +x_{4} x_{10} -1, x_{2} x_{12} -x_{1} x_{11} )