Highest vectors of representations (total 16) ; the vectors are over the primal subalgebra. | g−7 | −g−2+g−10 | g−6 | g3+g−4 | h4+h2 | h3+h2 | g4+g−3 | g6 | −g10+g2 | g7 | g1 | g8 | g11 | g5 | g9 | g12 |
weight | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2ω1 | 2ω1 | 2ω1 | 2ω1 | 2ω1 | 2ω1 |
weights rel. to Cartan of (centralizer+semisimple s.a.). | −4ψ2 | −2ψ1−2ψ2 | −4ψ1 | 2ψ1−2ψ2 | 0 | 0 | −2ψ1+2ψ2 | 4ψ1 | 2ψ1+2ψ2 | 4ψ2 | 2ω1−2ψ1−2ψ2 | 2ω1+2ψ1−2ψ2 | 2ω1 | 2ω1 | 2ω1−2ψ1+2ψ2 | 2ω1+2ψ1+2ψ2 |
Isotypical components + highest weight | V−4ψ2 → (0, 0, -4) | V−2ψ1−2ψ2 → (0, -2, -2) | V−4ψ1 → (0, -4, 0) | V2ψ1−2ψ2 → (0, 2, -2) | V0 → (0, 0, 0) | V−2ψ1+2ψ2 → (0, -2, 2) | V4ψ1 → (0, 4, 0) | V2ψ1+2ψ2 → (0, 2, 2) | V4ψ2 → (0, 0, 4) | V2ω1−2ψ1−2ψ2 → (2, -2, -2) | V2ω1+2ψ1−2ψ2 → (2, 2, -2) | V2ω1 → (2, 0, 0) | V2ω1−2ψ1+2ψ2 → (2, -2, 2) | V2ω1+2ψ1+2ψ2 → (2, 2, 2) | |||||||||||||||||||||||||||||||||||||||||||||
Module label | W1 | W2 | W3 | W4 | W5 | W6 | W7 | W8 | W9 | W10 | W11 | W12 | W13 | W14 | W15 | ||||||||||||||||||||||||||||||||||||||||||||
Module elements (weight vectors). In blue - corresp. F element. In red -corresp. H element. |
|
|
|
| Cartan of centralizer component.
|
|
|
|
|
|
| Semisimple subalgebra component.
|
|
|
| ||||||||||||||||||||||||||||||||||||||||||||
Weights of elements in fundamental coords w.r.t. Cartan of subalgebra in same order as above | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2ω1 0 −2ω1 | 2ω1 0 −2ω1 | 2ω1 0 −2ω1 | 2ω1 0 −2ω1 | 2ω1 0 −2ω1 | 2ω1 0 −2ω1 | ||||||||||||||||||||||||||||||||||||||||||||
Weights of elements in (fundamental coords w.r.t. Cartan of subalgebra) + Cartan centralizer | −4ψ2 | −2ψ1−2ψ2 | −4ψ1 | 2ψ1−2ψ2 | 0 | −2ψ1+2ψ2 | 4ψ1 | 2ψ1+2ψ2 | 4ψ2 | 2ω1−2ψ1−2ψ2 −2ψ1−2ψ2 −2ω1−2ψ1−2ψ2 | 2ω1+2ψ1−2ψ2 2ψ1−2ψ2 −2ω1+2ψ1−2ψ2 | 2ω1 0 −2ω1 | 2ω1 0 −2ω1 | 2ω1−2ψ1+2ψ2 −2ψ1+2ψ2 −2ω1−2ψ1+2ψ2 | 2ω1+2ψ1+2ψ2 2ψ1+2ψ2 −2ω1+2ψ1+2ψ2 | ||||||||||||||||||||||||||||||||||||||||||||
Single module character over Cartan of s.a.+ Cartan of centralizer of s.a. | M−4ψ2 | M−2ψ1−2ψ2 | M−4ψ1 | M2ψ1−2ψ2 | M0 | M−2ψ1+2ψ2 | M4ψ1 | M2ψ1+2ψ2 | M4ψ2 | M2ω1−2ψ1−2ψ2⊕M−2ψ1−2ψ2⊕M−2ω1−2ψ1−2ψ2 | M2ω1+2ψ1−2ψ2⊕M2ψ1−2ψ2⊕M−2ω1+2ψ1−2ψ2 | M2ω1⊕M0⊕M−2ω1 | M2ω1⊕M0⊕M−2ω1 | M2ω1−2ψ1+2ψ2⊕M−2ψ1+2ψ2⊕M−2ω1−2ψ1+2ψ2 | M2ω1+2ψ1+2ψ2⊕M2ψ1+2ψ2⊕M−2ω1+2ψ1+2ψ2 | ||||||||||||||||||||||||||||||||||||||||||||
Isotypic character | M−4ψ2 | M−2ψ1−2ψ2 | M−4ψ1 | M2ψ1−2ψ2 | 2M0 | M−2ψ1+2ψ2 | M4ψ1 | M2ψ1+2ψ2 | M4ψ2 | M2ω1−2ψ1−2ψ2⊕M−2ψ1−2ψ2⊕M−2ω1−2ψ1−2ψ2 | M2ω1+2ψ1−2ψ2⊕M2ψ1−2ψ2⊕M−2ω1+2ψ1−2ψ2 | M2ω1⊕M0⊕M−2ω1 | M2ω1⊕M0⊕M−2ω1 | M2ω1−2ψ1+2ψ2⊕M−2ψ1+2ψ2⊕M−2ω1−2ψ1+2ψ2 | M2ω1+2ψ1+2ψ2⊕M2ψ1+2ψ2⊕M−2ω1+2ψ1+2ψ2 |
2\\ |